1. Find the following limits.
(a) $\lim _{x \rightarrow 1} 3 e^{x}$
(b) $\lim _{x \rightarrow-3} \frac{x^{2}+4 x+3}{x+3}$
(c) $\lim _{x \rightarrow 0} \frac{1-\sqrt{1+x^{2}}}{x^{2}}$
(d) $\lim _{x \rightarrow 1} \frac{1-\sqrt{3-x}}{x+2}$
(e) $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+3}}{7-2 x}$
(f) $\lim _{x \rightarrow 1^{-}} \frac{1}{(x-1)^{2}}$
2. Complete the formal definition of continuity.

The function $f(x)$ is continuous at $x=a$ if
3. On which intervals are the following functions continuous?
(a) $\frac{1}{x-1}+1$
(b) $\sqrt{1-x^{2}}-2$
(c) $\frac{(x-1)(x-2)}{(x-3)(x-4)}$
(d) $\frac{\sin (x)}{\cos (x)}$
4. For which value(s) of k is the function $f(x)=\left\{\begin{array}{ll}4-k x & \text { if } x>1, \\ x^{2}+k & \text { if } x \leq 1\end{array} \quad\right.$ continuous?
5. (a) Write the formal definition of the derivative.

$$
f^{\prime}(a)=
$$

(b) Use the formal definition of the derivative to prove that $\frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}}$.
6. (a) Write the quotient rule for derivatives:

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=
$$

(b) Use to quotient rule to prove that $\frac{d}{d x} \cot (x)=-\csc ^{2}(x)$.

Page 3 of 5
7. Find the following derivatives.
(a) $\frac{d}{d x} \sqrt{\cos (x)}$
(b) $\frac{d}{d t} \frac{1}{1+e^{-t}}$
(c) $\frac{d}{d x} \frac{x^{2}-3 e^{x}}{(x-2)^{2}}$
(d) $\frac{d}{d x} \frac{4 x-3}{\sqrt{x^{2}-1}}$
(e) $\frac{d}{d x}\left(e^{\sin (x)}-x \cos (x)\right)$
8. Find the equation of the tangent line at $x=-\pi$ to the graph of

$$
f(x)=\frac{\sin (x)+1}{x}
$$

9. Find $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)$ and prove that your answer is correct using the squeeze theorem.
